Saturday, September 21, 2019
    

Researcher Profiles

Brandon Gilyroed

Brandon Gilyroed

Project 17-006

Gilyroed's research is interdisciplinary in nature, focusing on renewable energy production from agricultural byproducts and wastes using anaerobic digestion technology. Anaerobic digestion is a microbial process where organic substrates are converted principally to methane and carbon dioxide (biogas). Using a combination of engineering principles, analytical chemistry, microbiology, and molecular biology, my research focuses on understanding the mechanisms of microbial conversion of substrates into renewable energy. By understanding the process at a molecular level, avenues for optimization of the process can be discovered. 

A derivative of his research on anaerobic digestion is the production of biohydrogen through fermentation. Hydrogen is an energy dense intermediate product in anaerobic digestion that can be collected as a final product under certain process conditions. There are thermodynamic constraints imposed on biohydrogen production, which results in poor conversion of substrate to product. Understanding how the microbial community responds to these constraints is an important step in discovering areas for future genetic manipulation that will enable better substrate conversion rates. 

He is also interested in composting as a way to manage nutrients in agricultural wastes and reduce pathogens. Composting can also be a low cost technology employed in emergency situations for the disposal of animal mortalities. In the event of a zoonotic outbreak requiring the disposal of large numbers of potentially infectious animals, composting is a disposal strategy that can safely and quickly be employed on site. He is interested in the chemical and microbial processes involved in composting a wide range of substrates and has done research investigating the disposal of cattle mortalities in compost, as well as the fate of infectious prions and Bacillus spp. endospores during composting. Gilyroed has also examined the biodegradation of recalcitrant substrates such as hydrocarbons, lignocellulose, and keratin in compost systems.

Current OP-funded project: 17-006 Reducing pathogens and greenhouse gas emissions from swine manure using anaerobic digestion
Previous Researcher Previous Researcher
Next Researcher Next Researcher